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Antibiotic Resistance and Agriculture

Section 1.  Learning Outcomes

By the end of this chapter, you will be able to:
· Discuss the importance of antibiotic resistance as a global challenge
· Discuss the various ways that antibiotic resistance genes are shared among bacteria, both of the same and different species.
· Understand current uses of antibiotics and the trends we are observing in their use.
· Discuss impacts of environmental antibiotic resistance on humans.
· Discuss trends observed for antibiotic resistance genes in the environment in CA.

Section 2. Chapter Overview

After an introduction to the challenge of rising levels of antibiotic resistance, we will discuss the ways in which antibiotic resistance genes can be shared among bacteria.  We then briefly touch upon current uses and trends in use for antibiotics, and the development of new antibiotics.  We then discuss the impact of antibiotic resistance in the environment on human health and we will look at some data for California on antibiotic resistance genes.

Section 3. Introduction

The development of antibiotics over the 20th century lead to incredible improvements in medical care.   We take for granted that infections such as those resulting from small surgeries, etc. will be treatable.

However, increasing microbial resistance to our antibiotics is now a worldwide threat to public health. Certain once-lifesaving drugs are now thought to be “worthless” (Woolhouse & Farrar, 2014), and development of new antibiotics has slowed dramatically in recent decades. Thus, it is critical to extend the useful life of the drugs on which we currently rely.  

According to some estimates, antibiotic resistance already accounts for at least 700,000 lives lost per year globally (J. O’Neill, 2014; J. I. O’Neill, 2016), and if levels of antimicrobial resistance keep rising, there could be up to 10 million deaths per year by 2050.  Recent cases of multi- and pandrug-resistant bacteria are causing concern about our ability to treat common bacterial infections (Liu et al., 2016; Olaitan et al., 2015).

Over time, bacteria “figure out” how to resist antibiotics.  For example, they may be able to encode a gene that can alter the antibiotic so it doesn’t function anymore, export it out of the cell, or block its entry into the cell.  

Section 4. Proliferation of antibiotics in the environment

The ability to resist an antibiotic can start out only in a particular bacterial cell, but the resistance can then proliferate because that cell has a survival advantage in the presence of the antibiotic.  For example, in the picture below, only the purple cell on the left is able to resist the antibiotic.  Once the drug is applied, all of the yellow cells are killed, leaving just the purple one to reproduce.  The panel on the right shows the population after the purple cell has reproduced.  The ability to resist the antibiotic, encoded by an antibiotic resistance gene (ARG), has been passed on by what is called vertical gene transfer, because the transfer happens between generations.
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In addition to being passed by vertical gene transfer, ARGs can be passed from cell to cell by horizontal gene transfer (HGT.  This can occur in various ways:  1) the cells may actually come into contact with each other and genetic material can travel from one to the other (conjugation), 2) free DNA in the environment that came from one cell at some point can be taken up by a new cell (transformation), and 3) viruses can “package up” bits of DNA and play a role in transferring that DNA between cells (transduction).
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The level of antibiotic resistance observed in bacteria worldwide is rising.  This is a problem, because we need our current arsenal of antibiotics to work against disease-causing organisms, called pathogens. 

In fact, the CDC and the World Health Organization are extremely concerned about the level of proliferation of ARGs we are seeing.  According to the World Health Organization, antibiotic resistance “threatens the achievements of modern medicine.”

Section 5. Current Uses of Antibiotics

Because use of antibiotics leads to eventual resistance, it is important to know how and why we use antibiotics. According to the Johns Hopkins Center for a Livable Future, approximately 3.3 million kg are used per year in human medicine.  Use in humans is typically regulated by a doctor, and is prescribed to treat infections at “therapeutic doses,” which are designed to not result in proliferation of resistance.  However, 13 million kg are used in animals, and the purpose here is to promote growth as well as treat infections. Thus, much of these drugs are given at “subtherapeutic doses,” which can give an advantage to bacteria containing resistance genes.  The presence of low amounts of antibiotic results in a “selective pressure,” meaning it will select for (or give an advantage to) bacteria that are able to resist the antibiotic.
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Section 6. Trends in medical antibiotic use.

· Medical antibiotic use (MAU) increased 36% from 2000-2010
· Carbapenems, a last-resort class (meaning doctors try to hold back on use of these drugs so that they are only used when really needed), increased 45%
· Most increase occurred in countries with little regulation.  In areas of the world where infrastructure providing clean water may be lacking, antibiotics may be available over the counter.

Animal antibiotic use

· Agricultural antibiotic use (AAU) has also dramatically increased 
· Selective pressure occurs in livestock
· > 90% of manure disposed by land application

There are two categories of antibiotics used in animal agriculture: ionophore and nonionophore.  Ionophores are primarily used to increase feed efficiency and are not used in human medicine at this time.  They work by transporting cations and other small molecules across biological membranes, which disrupts the import cation gradient that typically exists across the membrane.  This stops growth of bacteria and fungi and can kill the cells.  Nonionophores used in agriculture are also frequently used to increase feed efficiency by a number of different mechanisms and are often the exact same drugs used in human medicine.  Some growth promoters work by changing the gut microbiome in the animal.  Suppressing the typical non-pathogenic bacteria can lead to a more absorptive intestinal lining and greater weight gains.  Also, infection due to intense confinement may be minimized through nonionophore use.

Section 7.  Development of new antibiotics.  

While it would be nice to think that we can easily keep up with antibiotic resistance by coming up with new drugs, the evidence shows that this cannot be relied on.
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This graph shows that since 1980, the number of new antibiotics developed has steadily declined.  The reasons for this may be a mix of economic (it is very expensive to develop new drugs) and scientific (there are only a certain number of ways to kill an organism) factors.
   	
Section 8. Impacts of agricultural antibiotics use on human health 

Antibiotics used for human medicine are sorted into classes by their chemical similarity and mode of action.  Importantly, most classes have one or more drugs that are approved for use in animals.  Resistance mechanisms can be sorted into groups of intrinsic and acquired; the proliferation of the latter is more of a concern for human health.  Acquired resistance mechanisms can be further broken down into four types of modes of actions: prevention of access for the antibiotic to the target, modification of the target, protection of the target from the drug, and modification of the drug.  Prevention of access to the target can be attained through both reducing permeability for the drug into the cell and increasing efflux of the drug out of the cell.  Because membrane channels and efflux pumps can be effective across classes of antibiotics, these mechanisms can lead to multi-drug resistance.

Animal to human transfer of antibiotic resistant pathogens and antibiotic resistance genes can occur via:

Direct transmission.  Antibiotic resistant bacteria associated with animals can be transferred directly to animal handlers and slaughterhouse workers.  There are documented cases of this type of transfer vancomycin-resistant enterococci from hens to poultry farmers in the Netherlands (Andersson and Hughes, 2011), of fluoroquinolone-resistant Escherichia coli to poultry farmers (van den Bogaard et al. 2001), and of MRSA transmission to pig farmers (Voss et al. 2005).
Environmental contamination.  Antibiotic resistant bacteria may travel off farms into the surrounding environment, where it can subsequently impact human health.  For example. proximity to manured fields and livestock has been associated with increased infection with MRSA.
Commercial food supply.  Foodborne pathogens such as Salmonella that acquire antibiotic resistance can pose great threats to people.
 
The graph below (from Silbergeld, 2008) shows that as fluoroquinolones were licensed for use in poultry and livestock, the percentage of clinical isolates of the pathogen Campylobacter jejuni that were resistant to these drugs increased.
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The next graph (Dutil et al. 2010) shows that after a voluntary withdrawal of an antibiotic, the percent resistance decreased dramatically.  If the gene providing resistance is not needed for survival, the “cost” of carrying it (called a fitness cost) may make it favorable for the bacteria to lose the gene.  This is encouraging, because it indicates that antibiotic resistance proliferation can in some cases be slowed or even reversed.  However, other evidence shows that the fitness cost of carrying genes can sometimes be negligible.
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Section 9. Antibiotic resistance in the environment

Recent work has identified the importance of environmental compartments in the movement of ARGs.  Aquatic systems (Baquero, Martínez, & Cantón, 2008; Marti et al., 2014; Martins, Zanetti, Pitondo-Silva, & Stehling, 2014; Pruden, Arabi, & Storteboom, 2012; Storteboom, Arabi, Davis, Crimi, & A, 2010), biofilms (Engemann, Keen, Knapp, Hall, & Graham, 2008; Schwartz, Kohnen, Jansen, & Obst, 2003), and aquatic sediments (Chen, Liang, Huang, Zhang, & Li, 2013; Cummings et al., 2011; Yang et al., 2013) can all serve as important reservoirs for ARG, especially near agriculture (Pruden et al., 2012).  ARB can travel via air (Chapin, Rule, Gibson, Buckley, & Schwab, 2005; Gibbs et al., 2006; Rule, Evans, & Silbergeld, 2008), and our recent work in this area is described below.  Transport via air or water can mobilize ARGs to other areas where selective and co-selective processes have the potential to further increase ARG levels.
There are several routes by which an increased environmental reservoir of antibiotic resistant bacteria (ARB) and ARGs can impact human health. One way is through human exposure to antibiotic resistant zoonotic pathogens (not adapted for human-to-human transmission) (Chang, Wang, Regev-Yochay, Lipsitch, & Hanage, 2014; Mcewen, 2012; Travers & Barza, 2002).  Known occurrences of direct transfer of zoonotic pathogens include the millions of cases of food-borne gastrointestinal illnesses that result from pathogens including Salmonella and Campylobacter each year (Scallan et al., 2011). In such cases, the illness is self-limiting due to the lack of human-to-human transfer.  In contrast, ARGs can also be transferred to bacteria that are capable of human-to-human transmission.  Some bacteria, such as vancomycin-resistant enterococci (VRE) can serve as pathogens in both animals and humans, and once they cross the species barriers can result in sustained illness in humans (Lipsitch, Singer, & Levin, 2002).  However, even non-pathogenic bacteria originating in animals can be a source of ARGs in the human microbiome that may subsequently be passed among species.
Recent work in our lab (by Sanchez et al. (2016)) compared antibiotic resistant bacteria and ARGs in air samples collected near feedlots and organic cattle farms.  Three farms of each type were sampled, and from each site, 200 different bacteria from the air collected from each site (1200 in total) were purified and tested individually for resistance to a suite of antibiotics.  In general, greater resistance was observed in bacteria isolated from feedlots versus organic farms.

[image: ]



In a study of the resistome (which is the collection of ARGs in a particular location) in public parks in four California cities, we recently observed dramatic city-to-city differences for blaSHV levels in soils, with Bakersfield having the highest levels (Figure 1) (Echeverria-Palencia et al., 2017).  Surprisingly, Fresno soil levels for the same gene were quite low, even though both are home to much agricultural activity.  For drinking water available at parks, San Diego and Los Angeles had more consistently detected and higher levels of blaSHV and sul1, respectively (Figure 2).  In general, drinking water variability was quite high, which is both expected and difficult to elucidate given the complex and dynamic sourcing of drinking water.  



Figure 1 | blaSHV ARG quantities in California soils. Soil ARG gene copy numbers across 24 parks in four California cities. Error bars denote intra-park variability when averaged over three sampling triplicates. blaSHV copy numbers normalized to per gram of soil. (Echeverria-Palencia et al., 2017).



Figure 2 | blaSHV ARG quantities in California tap water. Tap water ARG gene copy numbers across 24 parks in four California cities. Error bars denote intra-park variability when averaged over three sampling triplicates. (a) blaSHV copy numbers normalized to per liter of water (b) sul1 copy numbers normalized to per liter of water.  (Echeverria-Palencia et al., 2017)a.
b.
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Park 1	0	260.30208208277901	484.45000770793462	0	0	260.30208208277901	484.45000770793462	0	Los Angeles	San Diego	Bakersfield	Fresno	0	633.32038188888839	3600.136722193824	0	Site 1.2	0	721.50637628897402	202.023663288634	0	0	721.50637628897402	202.023663288634	0	Los Angeles	San Diego	Bakersfield	Fresno	0	2010.9704292688889	376.29999160766602	0	Site 1.3	0	185.6832186301412	0	0	0	185.6832186301412	0	0	Los Angeles	San Diego	Bakersfield	Fresno	0	551.8022467466667	0	0	Park 2	23.04485098050483	747.36099393448762	0	0	23.04485098050483	747.36099393448762	0	0	Los Angeles	San Diego	Bakersfield	Fresno	32.190568389164071	2684.8109651999998	0	0	Site 2.2	0	578.37461027705695	178.24282884597801	0	0	578.37461027705695	178.24282884597801	0	Los Angeles	San Diego	Bakersfield	Fresno	0	2085.7106176333332	508.90699307123822	0	Site 2.3	0	8.7148276610659572	0	0	0	8.7148276610659572	0	0	Los Angeles	San Diego	Bakersfield	Fresno	0	603.44886779999786	0	0	Park 3	1.718912072806952	686.19401085085815	0	0	1.718912072806952	686.19401085085815	0	0	Los Angeles	San Diego	Bakersfield	Fresno	6.8326558358967286	2981.9186273333339	0	0	Site 3.2	0	1186.4538123341711	0	0	0	1186.4538123341711	0	0	Los Angeles	San Diego	Bakersfield	Fresno	0	2867.9287242199989	0	0	Site 3.3	0.88562259266293897	124.98587339574119	0	0	0.88562259266293897	124.98587339574119	0	0	Los Angeles	San Diego	Bakersfield	Fresno	3.8003592689832049	547.63506890999997	0	0	Park 4	0	853.61613320022752	0	0	0	853.61613320022752	0	0	Los Angeles	San Diego	Bakersfield	Fresno	0	3093.9699310133328	0	0	Site 4.2	0	203.0363966029534	0	0	0	203.0363966029534	0	0	Los Angeles	San Diego	Bakersfield	Fresno	0	2062.9764398833331	0	0	Site 4.3	12.276733170039471	702.85045224177759	0	0	12.276733170039471	702.85045224177759	0	0	Los Angeles	San Diego	Bakersfield	Fresno	15.81460138161977	2301.56091062	0	0	Park 5	0	539.13018453081952	260.56649501168022	0	0	539.13018453081952	260.56649501168022	0	Los Angeles	San Diego	Bakersfield	Fresno	0	2739.0597501466668	1205.42871899075	0	Site 5.2	17.593395604337751	2325.874986186298	0	0	17.593395604337751	2325.874986186298	0	0	Los Angeles	San Diego	Bakersfield	Fresno	27.017276363136869	9972.5888484499992	0	0	Site 5.3	15.6967395351466	466.73724361856227	0	0	15.6967395351466	466.73724361856227	0	0	Los Angeles	San Diego	Bakersfield	Fresno	42.995162705580398	7025.2395790222217	0	0	Park 6	8.649077863610918	284.5788991364314	33.303541501362432	0	8.649077863610918	284.5788991364314	33.303541501362432	0	Los Angeles	San Diego	Bakersfield	Fresno	9.6781219728290981	2590.6901889777778	1324.4260511398311	7.1281327211968346	Site 6.2	10.913742798731199	1040.484738110822	148.79853431383799	0	10.913742798731199	1040.484738110822	148.79853431383799	0	Los Angeles	San Diego	Bakersfield	Fresno	21.570272122820221	1975.295257422222	1088.24015434583	78.591865962145306	Site 6.3	42.708401083531157	486.49620493131692	0	0	42.708401083531157	486.49620493131692	0	0	Los Angeles	San Diego	Bakersfield	Fresno	33.34702875361581	2275.0030793688888	0	0	
Copy number/L
of water



sul1 Copies in Tap Water
Park 1	716591.85897835542	0	0	0	716591.85897835542	0	0	0	Los Angeles	San Diego	Bakersfield	Fresno	7018923.0466037299	0	0	0	Site 1.2	606680.43548700598	0	73.058567047119411	0	606680.43548700598	0	73.058567047119411	0	Los Angeles	San Diego	Bakersfield	Fresno	7840280.1432291698	0	867.18804359436058	0	Site 1.3	163491.52335673029	0	0	0	163491.52335673029	0	0	0	Los Angeles	San Diego	Bakersfield	Fresno	7748911.8267144104	0	0	0	Park 2	3920.3990994095748	0	0	0	3920.3990994095748	0	0	0	Los Angeles	San Diego	Bakersfield	Fresno	20335.814954969621	0	0	0	Site 2.2	30316.58949516451	1.50210105	0	0	30316.58949516451	1.50210105	0	0	Los Angeles	San Diego	Bakersfield	Fresno	22043.76448631287	3.32548697	0	0	Site 2.3	3168.8232714102442	3.2906556	0	0	3168.8232714102442	3.2906556	0	0	Los Angeles	San Diego	Bakersfield	Fresno	7228.9139556884766	100.40122031999999	0	0	Park 3	460.60906251271598	0	0	0	460.60906251271598	0	0	0	Los Angeles	San Diego	Bakersfield	Fresno	1349.929416974386	0	0	0	Site 3.2	830.85548164504598	0.81910521000000003	0	0	830.85548164504598	0.81910521000000003	0	0	Los Angeles	San Diego	Bakersfield	Fresno	2479.5302539401582	1.49336019	0	0	Site 3.3	1615.6854318730771	117.34808202000001	0	0	1615.6854318730771	117.34808202000001	0	0	Los Angeles	San Diego	Bakersfield	Fresno	1968.6840152740481	345.83711021999892	0	0	Park 4	11613.36888983447	4201.9764143911671	0	0	11613.36888983447	4201.9764143911671	0	0	Los Angeles	San Diego	Bakersfield	Fresno	28489.209283192951	8238.5381212088869	0	0	Site 4.2	12867.01063996337	3883.3908954495441	377.12981032434402	0	12867.01063996337	3883.3908954495441	377.12981032434402	0	Los Angeles	San Diego	Bakersfield	Fresno	26702.648634380759	12862.226914166669	577.89606120851306	0	Site 4.3	1466.385009640657	0	0	0	1466.385009640657	0	0	0	Los Angeles	San Diego	Bakersfield	Fresno	1699.6687130795581	0	0	0	Park 5	31892.76229669504	0	0	786.94871036228858	31892.76229669504	0	0	786.94871036228858	Los Angeles	San Diego	Bakersfield	Fresno	187764.9116516113	0	0	2551.1851415311121	Site 5.2	18614.552227337859	1068.6075704750001	0	0	18614.552227337859	1068.6075704750001	0	0	Los Angeles	San Diego	Bakersfield	Fresno	130168.698425293	2221.6826807249481	0	0	Site 5.3	43794.16083592386	0	0	141.55650651389229	43794.16083592386	0	0	141.55650651389229	Los Angeles	San Diego	Bakersfield	Fresno	254304.06622144909	0	0	1042.9889996888901	Park 6	4253.4608850785298	0	226.07578531901041	160.27350666666669	4253.4608850785298	0	226.07578531901041	160.27350666666669	Los Angeles	San Diego	Bakersfield	Fresno	5585.339139699935	0	762.10347874959302	794.33733863999987	Site 6.2	8881.6808064778652	0	545.84989418775513	0	8881.6808064778652	0	545.84989418775513	0	Los Angeles	San Diego	Bakersfield	Fresno	50952.89866129557	0	350.85764453249681	0	Site 6.3	5106.2439047481366	0	599.80542624793145	0	5106.2439047481366	0	599.80542624793145	0	Los Angeles	San Diego	Bakersfield	Fresno	5083.4410111109419	0	487.96386351436371	0	
Copy number/L
of water
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Ceftiofur Resistance in Salmonella Heidelberg



collected. Exposure to ceftiofur-resistant E. coli strains 
appeared to have increased in recent years in Canada (Fig-
ure 1). In 2008, exposure to ceftiofur-resistant E. coli strains 
was highest in British Columbia and lowest in Québec.



Temporal Changes in Ceftiofur Resistance 
in the Province of Québec, 2003–2008



In 2003–2004, >60% of the chicken Salmonella 
Heidelberg isolates were ceftiofur resistant, and ceftiofur 
resistance among chicken E. coli and human Salmonella 
Heidelberg isolates varied from 30% to 40% (Figure 2). 
Ceftiofur resistance declined sharply immediately after the 
fi rst quarter of 2005 among chicken E. coli and Salmonel-
la Heidelberg isolates, and a similar decline began in the 
next quarter among human Salmonella Heidelberg isolates 
(Figure 2). This decline steadily continued until the end 
of 2006. As a result, the prevalence of ceftiofur resistance 
signifi cantly decreased from 2004 to 2006 among chicken 
(62% to 7%; p<0.001) and human (36% to 8%; p<0.0001) 
Salmonella Heidelberg isolates and chicken E. coli iso-
lates (34% to 6%; p<0.0001 [Table]). Then, from 2006 to 
2008, the prevalence of ceftiofur resistance signifi cantly 
increased among chicken E. coli isolates (6% to 18%; p 
= 0.002), and prevalence of ceftiofur resistance increased, 
but not signifi cantly, among Salmonella Heidelberg from 
chicken (7% to 18%; p = 0.32) and human (8% to 12%; p = 
0.41) isolates (Table).



Discussion
CIPARS data clearly indicate a temporal association 



between changing levels of contamination of retail chicken 
with ceftiofur-resistant Salmonella Heidelberg strains and 
incidence of ceftiofur-resistant Salmonella Heidelberg in-
fection in humans. This correlation is strong and applies to 
different regions of Canada. Our observation is consistent 



with published results from outbreak investigations and 
case-control studies suggesting that chicken products are a 
source of human infection with Salmonella Heidelberg in 
Canada (7,8).



Although humans potentially can become infected with 
ceftiofur-resistant Salmonella Heidelberg from sources oth-
er than chicken, chicken appears the most likely source in 
Canada. Ceftiofur-resistant Salmonella Heidelberg has never 
been reported among CIPARS porcine Salmonella of abat-
toir origin, and it has not been detected among retail pork, 
abattoir beef, or retail beef, in which Salmonella prevalence 
remains <2% (12). Data generated by National Antimicro-
bial Resistance Monitoring System retail surveillance in the 
United States indicated that 17% of Salmonella Heidelberg 
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Figure 2. Prevalence of ceftiofur resistance (moving average of the 
current quarter and the previous 2 quarters) among retail chicken 
Escherichia coli, and retail chicken and human clinical Salmonella 
enterica serovar Heidelberg isolates during 2003–2008 in Québec, 
Canada.



Table. Prevalence of ceftiofur resistance among human and retail chicken Salmonella serovar Heidelberg isolates and retail chicken 
Escherichia coli isolates from Canadian provinces surveyed during 2003–2008 



Prevalence of ceftiofur resistance, % (no. resistant isolates/total no. isolates tested)
Isolate/province 2003 2004 2005 2006 2007 2008
Human clinical Salmonella Heidelberg
 Québec 31 (52/167) 36 (42/116) 35 (37/106) 8 (8/96) 6 (4/63) 12 (8/65)
 Ontario 18 (31/172) 38 (70/185) 30 (42/140) 10 (12/122) 22 (21/94) 32 (7/22)
 Saskatchewan 0 (0/15) 7 (1/14) 0 (0/11) 0 (0/7)
 British Columbia 23 (3/13) 19 (3/16)
Chicken retail Salmonella Heidelberg
 Québec 65 (13/20) 62 (18/29) 33 (4/12) 7 (1/14) 19 (6/32) 18 (7/38)
 Ontario 16 (3/19) 58 (19/33) 27 (3/11) 21 (3/14) 21 (9/42) 14 (3/21)
 Saskatchewan 0 (0/5) 13 (1/8) 0 (0/9) 8 (1/12)
 British Columbia 50 (2/4) 67 (2/3)
Chicken retail E. coli
 Québec 32 (36/111) 34 (54/158) 25 (35/142) 6 (8/135) 13 (17/128) 18 (24/131)
 Ontario 18 (24/136) 21 (32/150) 17 (25/145) 22 (34/152) 22 (35/157) 24 (36/150)
 Saskatchewan 4 (3/82) 6 (5/85) 13 (10/75) 20 (18/92)
 British Columbia 29 (12/42) 49 (34/70)










Ceftiofur Resistance in Salmonella Heidelberg c o l l e c t e d .   E x p o s u r e   t o   c e f t i o f u r - r e s i s t a n t   E.  coli   s t r a i n s a p p e a r e d   t o   h a v e   i n c r e a s e d   i n   r e c e n t   y e a r s   i n   C a n a d a   ( F i g -u r e   1 ) .   I n   2 0 0 8 ,   e x p o s u r e   t o   c e f t i o f u r - r e s i s t a n t   E.  coli   s t r a i n s w a s   h i g h e s t   i n   B r i t i s h   C o l u m b i a   a n d   l o w e s t   i n   Q u é b e c . T e m p o r a l   C h a n g e s   i n   C e f t i o f u r   R e s i s t a n c e   i n   t h e   P r o v i n c e   o f   Q u é b e c ,   2 0 0 3 – 2 0 0 8 I n   2 0 0 3 – 2 0 0 4 ,   > 6 0 %   o f   t h e   c h i c k e n   Salmonella H e i d e l b e r g   i s o l a t e s   w e r e   c e f t i o f u r   r e s i s t a n t ,   a n d   c e f t i o f u r r e s i s t a n c e   a m o n g   c h i c k e n   E.  coli   a n d   h u m a n   Salmonella H e i d e l b e r g   i s o l a t e s   v a r i e d   f r o m   3 0 %   t o   4 0 %   ( F i g u r e   2 ) . C e f t i o f u r   r e s i s t a n c e   d e c l i n e d   s h a r p l y   i m m e d i a t e l y   a f t e r   t h e f i   r s t   q u a r t e r   o f   2 0 0 5   a m o n g   c h i c k e n   E.  coli   a n d   Salmonel- la   H e i d e l b e r g   i s o l a t e s ,   a n d   a   s i m i l a r   d e c l i n e   b e g a n   i n   t h e n e x t   q u a r t e r   a m o n g   h u m a n   Salmonella   H e i d e l b e r g   i s o l a t e s 

( F i g u r e   2 ) .   T h i s   d e c l i n e   s t e a d i l y   c o n t i n u e d   u n t i l   t h e   e n d 

o f   2 0 0 6 .   A s   a   r e s u l t ,   t h e   p r e v a l e n c e   o f   c e f t i o f u r   r e s i s t a n c e 

s i g n i f i   c a n t l y   d e c r e a s e d   f r o m   2 0 0 4   t o   2 0 0 6   a m o n g   c h i c k e n 

( 6 2 %   t o   7 % ;   p < 0 . 0 0 1 )   a n d   h u m a n   ( 3 6 %   t o   8 % ;   p < 0 . 0 0 0 1 ) 

Salmonella   H e i d e l b e r g   i s o l a t e s   a n d   c h i c k e n   E.  coli   i s o -

l a t e s   ( 3 4 %   t o   6 % ;   p < 0 . 0 0 0 1   [ T a b l e ] ) .   T h e n ,   f r o m   2 0 0 6   t o 

2 0 0 8 ,   t h e   p r e v a l e n c e   o f   c e f t i o f u r   r e s i s t a n c e   s i g n i f i   c a n t l y 

i n c r e a s e d   a m o n g   c h i c k e n   E.  coli   i s o l a t e s   ( 6 %   t o   1 8 % ;   p 

=   0 . 0 0 2 ) ,   a n d   p r e v a l e n c e   o f   c e f t i o f u r   r e s i s t a n c e   i n c r e a s e d , 

b u t   n o t   s i g n i f i   c a n t l y ,   a m o n g   Salmonella   H e i d e l b e r g   f r o m 

c h i c k e n   ( 7 %   t o   1 8 % ;   p   =   0 . 3 2 )   a n d   h u m a n   ( 8 %   t o   1 2 % ;   p   = 

0 . 4 1 )   i s o l a t e s   ( T a b l e ) .

D i s c u s s i o n

C I P A R S   d a t a   c l e a r l y   i n d i c a t e   a   t e m p o r a l   a s s o c i a t i o n 

b e t w e e n   c h a n g i n g   l e v e l s   o f   c o n t a m i n a t i o n   o f   r e t a i l   c h i c k e n 

w i t h   c e f t i o f u r - r e s i s t a n t   Salmonella   H e i d e l b e r g   s t r a i n s   a n d 

i n c i d e n c e   o f   c e f t i o f u r - r e s i s t a n t   Salmonella   H e i d e l b e r g   i n -

f e c t i o n   i n   h u m a n s .   T h i s   c o r r e l a t i o n   i s   s t r o n g   a n d   a p p l i e s   t o 

d i f f e r e n t   r e g i o n s   o f   C a n a d a .   O u r   o b s e r v a t i o n   i s   c o n s i s t e n t 

with published results from outbreak investigations and  case-control studies suggesting that chicken products are a  source of human infection with Salmonella Heidelberg in  Canada (7,8). Although humans potentially can become infected with  ceftiofur-resistant Salmonella Heidelberg from sources oth- er than chicken, chicken appears the most likely source in  Canada. Ceftiofur-resistant Salmonella Heidelberg has never  been reported among CIPARS porcine Salmonella of abat- toir origin, and it has not been detected among retail pork,  abattoir beef, or retail beef, in which Salmonella prevalence  remains <2% (12). Data generated by National Antimicro- bial Resistance Monitoring System retail surveillance in the  United States indicated that 17% of Salmonella Heidelberg 
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Figure 2. Prevalence of ceftiofur resistance (moving average of the 

current quarter and the previous 2 quarters) among retail chicken 

Escherichia coli, and retail chicken and human clinical Salmonella 

enterica serovar Heidelberg isolates during 2003–2008 in Québec, 

Canada.

T a b l e .   P r e v a l e n c e   o f   c e f t i o f u r   r e s i s t a n c e   a m o n g   h u m a n   a n d   r e t a i l chicken Salmonella serovar Heidelberg isolates and retail chicken  Escherichia coli   i s o l a t e s   f r o m   C a n a d i a n   p r o v i n c e s   s u r v e y e d   d u r i n g 2003–2008  P r e v a l e n c e   o f   c e f t i o f u r   r e s istance, % (no. resistant isolates/total no. isolates tested) I s o l a t e / p r o v i n c e 2 0 0 3 2 0 0 4 2005 2006 2007 2008 H u m a n   c l i n i c a l   S al m o n e l l a   H e i d e l b e r g   Q u é b e c 3 1   ( 5 2 / 1 6 7 ) 3 6   ( 4 2 / 1 1 6 ) 35 (37/106) 8 (8/96) 6 (4/63) 12 (8/65)   O n t a r i o 1 8   ( 3 1 / 1 7 2 ) 3 8   ( 7 0 / 1 8 5 ) 30 (42/140) 10 (12/122) 22 (21/94) 32 (7/22)   S a s k a t c h e w a n 0(0/15) 7 (1/14) 0 (0/11) 0 (0/7)   B r i t i s h   C o l u m b i a 23(3/13) 19 (3/16) C h i c k e n   r e t a i l   Salm onella   H e i d e l b e r g   Q u é b e c 6 5   ( 1 3 / 2 0 ) 6 2   ( 1 8 / 2 9 ) 33 (4/12) 7 (1/14) 19 (6/32) 18 (7/38)   O n t a r i o 1 6   ( 3 / 1 9 ) 5 8   ( 1 9 / 3 3 ) 27 (3/11) 21 (3/14) 21 (9/42) 14 (3/21)   S a s k a t c h e w a n 0(0/5) 13 (1/8) 0 (0/9) 8 (1/12)   B r i t i s h   C o l u m b i a 50(2/4) 67 (2/3) C h i c k e n   r e t a i l   E.  coli   Q u é b e c 3 2   ( 3 6 / 1 1 1 ) 3 4   ( 5 4 / 1 5 8 ) 25 (35/142) 6 (8/135) 13 (17/128) 18 (24/131)   O n t a r i o 1 8   ( 2 4 / 1 3 6 ) 2 1   ( 3 2 / 1 5 0 ) 17 (25/145) 22 (34/152) 22 (35/157) 24 (36/150)   S a s k a t c h e w a n 4(3/82) 6 (5/85) 13 (10/75) 20 (18/92)   B r i t i s h   C o l u m b i a 29(12/42) 49 (34/70)
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showed the same antimicrobial resistance pattern
but showed more variability in the conventional
farms.



A randomly selected subset of isolates (n = 64)
cultured on either PCA or NA from conventional
and organic sites was identified using 16S rDNA
sequencing. For all four groups, Bacillus was most
prevalent (36–55 %), and Enterobacter was next
highest in prevalence. Detailed information is giv-
en in Supplemental Information.



Conventional and organic farming practices have
previously been compared with respect to ARB for
dairy cattle (Sato et al. 2006; Halbert et al. 2006; Ray
et al. 2006), poultry (Luangtongkum et al. 2006;
Alali et al. 2010; Heuer et al. 2001; Wittwer et al.
2005; Miranda et al. 2009), and swine (Gebreyes
et al. 2005; Mathew et al. 2001; Bunner et al.
2007). Information on resistance to antibiotics is
variable; in general, increased resistance has been
shown in dairy, poultry, and swine but not for beef,
where few data are available. Reinstein et al. (2009)
reported no systematic difference in antibiotic resis-
tance profiles isolates of Escherichia coli O157:H7
from fecal samples from organic, naturally-raised,
and conventional beef cattle.
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Fig. 2 Bars depict the average
and standard deviation of the
mean growth rate ratio for three
farms of each type (n = 6 farms).
Each of the 676 NA isolates was
grown in liquid culture in the
presence and absence of antibiotic
(panel a and b depict results for
low and high concentrations,
respectively) and absorbance was
measured at time points. Hollow
and filled bars represent the
conventional and organic farms,
respectively
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Fig. 3 Bars depict the average and standard deviation of the mean
growth rate ratio for three farms of each type (n = 6 farms) for the
PCA isolates. Each of the 619 isolates was grown in liquid culture
in the presence and absence of antibiotic (panel a and b depict
results for low and high concentrations, respectively), and absor-
bance was measured at time points. Hollow and filled bars repre-
sent the conventional and organic farms, respectively
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